Quality, Reputation and the Price of Wine

Dániel Békési, Andreas Huber, Dieter Pennerstorfer & Christoph Weiss

Our agenda

- Explaining Austrian quality wine prices
 - Very interesting and detailed panel data set
 - Hedonic price analysis
- Short- and long-run effects of quality (reputation) on prices
 - Wine guide reviews (Fallstaff)
- Modelling the link between quality and reputation
- Accounting for endogeneity due to the selection procedure of graded wines
 - Heckman’s approach

Wine quality and reputation

- A complex product (experience good)
- Consumers lack perfect information about the true quality
 - Costly to improve their information
 - Hence, third-party (expert) reviews may reduce this gap
 - Risk reduction
- Shapiro (1983): reputation (influenced by prior quality) that drives consumer decisions leads to higher prices
 - Quality has (i) an immediate and (ii) a long-run effect
 - These should be decoupled
 - Neglecting reputation effects might lead to an over-estimated impact of short-run changes in quality

Concerns about endogeneity

- Endogeneity is an important feature, even if neglected in many empirical works – Oczkowski (2014)
- Due to measurement error in quality
 - “OLS procedures may seriously distort the statistical significance of attributes” – Oczkowski (2001)
- Due to omitted variables
 - Experts may be wrong in assessing “en primeur” wine quality (unobserved quality) – Dubois and Nauges (2010)
- Caused by the sample selection procedure of the wine guide
 - Non-randomly selected sample
 - 2-step approach
Data

- More than 7,000 single Austrian wines (2004-2007), 488 wineries
 - About 35% of the annual national production of quality wines

- Characteristics:
 - type (red/rose/white)
 - year of harvest
 - grape
 - size of the winery
 - lag between harvest and bottling

- Experts' grades on wines:
 - Falstaff-Wine-Guide (scale 1-100: color, appearance, aroma, bouquet, flavor and finish)

- Reputation of the winery:
 - Scale between 0 and 3, later 5 stars (normalized to 1)

- Selection bias: quality may be endogeneous in the selected sample
 - Basically, the winegrowers decide which wines are selected for grading
 - Only quality wines

Selection process

- Selection process: Winery(w), Falstaff-Guide(g)

- Qual$_{iwt,w}$
- X$_{iwt}$
- Select$_{iwt}=1$
- p_{iwt}

- Selection process: Winery(w), Falstaff-Guide(g)

- Qual$_{iwt,w}$
- X$_{iwt}$
- Select$_{iwt}=1$
- p_{iwt}
Selection process

Winery (w)

Falstaff-Guide (g)

Qual_{w,t,w}

Qual_{w,t,g}

X_{w,t}

P_{w,t}

Select_{w,t}=1

Two-step modelling approach

Wooldridge (2001)

(i): probit (eq. 4) (ii): 2SLS (eq. 1-3)

(1) \ln(Price_{w,t}) = \alpha_1 Qual_{w,t} + \alpha_2 Rep_{w,t} + X_{w,t,\beta} + IMR_{w,t,\gamma} + \epsilon_{w,t}

(2) Qual_{w,t} = (X_{w,t}, IMR_{w,t}, Z_{w,t})\delta_1 + u_{1,w,t}

(3) Rep_{w,t} = (X_{w,t}, IMR_{w,t}, Z_{w,t})\delta_2 + u_{2,w,t}

(4) Select_{w,t} = 1 \left((X_{w,t}, Z_{w,t})\delta_3 + u_{3,w,t} > 0 \right)

- Select = 1 if a wine is selected for evaluation
- exogenous variables (summarized in X) incl. fixed effects
- additional instrumental variables Z
- IMR: inverse Mills ratio

Findings (selection)

<table>
<thead>
<tr>
<th></th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Dev.</td>
<td>Prob.</td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
</tr>
<tr>
<td>Select 1W</td>
<td>0.9498</td>
</tr>
<tr>
<td>IMR of selected Wines included in Model</td>
<td>0.5442</td>
</tr>
<tr>
<td>Select 2W</td>
<td>0.9498</td>
</tr>
<tr>
<td>IMR of selected Wines included in Model</td>
<td>0.5442</td>
</tr>
<tr>
<td>Airajew 1W</td>
<td>0.5262</td>
</tr>
<tr>
<td>Average Quality of 2W</td>
<td>0.0015</td>
</tr>
<tr>
<td>Average Quality of 3W</td>
<td>0.0015</td>
</tr>
<tr>
<td>Average Quality of 4W</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Select</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Dev.</td>
<td>Prob.</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
</tr>
<tr>
<td>Select 1W</td>
<td>0.9498</td>
</tr>
<tr>
<td>IMR of selected Wines included in Model</td>
<td>0.5442</td>
</tr>
<tr>
<td>Select 2W</td>
<td>0.9498</td>
</tr>
<tr>
<td>IMR of selected Wines included in Model</td>
<td>0.5442</td>
</tr>
<tr>
<td>Airajew 1W</td>
<td>0.5262</td>
</tr>
<tr>
<td>Average Quality of 2W</td>
<td>0.0015</td>
</tr>
<tr>
<td>Average Quality of 3W</td>
<td>0.0015</td>
</tr>
<tr>
<td>Average Quality of 4W</td>
<td>0.0015</td>
</tr>
</tbody>
</table>
Findings (quality and reputation effects on price)

Effect of quality increase

- Price increases if winegrowers increase the wine quality for one time period by one quality point.
- Median effects: 7.1%, 1.3%, 0.5%, 0.8%, 0.2%

Aggregate price effects

- Price increases if winegrowers succeed in increasing the wine quality permanently by one quality point.
- Median effects: 7.1%, 8.3%, 8.8%, 9.6%, 9.8%

Conclusions

- Significant effects of wine-guide reviews on prices
- Sizable cumulative quality effects over time
 - also strong influence of winery reputation (long-run quality effects)
 - winery reputation is determined by prior average quality scores
 - time span between harvest and bottling
- Two-step Heckman approach seems to be justified
 - selection bias (OLS overstates short- and long-run quality effects)
Thanks for your attention!

Literature

Appendix (quality equation)