Economical Success Factors of Pesticide Reduction in Grape Growing

Adeline ALONSO UGAGLIA, Associate Professor in Management
adeline.ugaglia@bordeaux-agro.fr

Stéphanie PERES, Research Economist
stephanie.peres@bordeaux-agro.fr

1. Introduction

Pesticides are the dominant technology, but problematic, in vineyard protection
- An intensive use of pesticides in grape growing (fungicides): 20% in volume for 3% of agricultural areas
- They cause many environmental and health problems

An increasing need of integrating environmental stakes in grape growing
- The institutional context is favorable to change :
 - 50 % by 2018 (Paillotin, 2008)
 - They are rejected by the society and consumers

The grape growers are embedded in a technological lock-in, as the other actors of the sector (Cowan and Gunby, 1996)

2. Theoretical framework

The determinants of environmental innovations:
conceptualization from two different frameworks

1. Introduction
2. Theoretical framework
3. Data & methods
4. Results & Discussion
5. Conclusion

The evolutionary framework about environmental innovations adoption and change

The literature about collective approaches and extension services in agriculture

Question:
What are the economical success factors of pesticide reduction in grape growing?
Technological change in vineyard protection to reduce pesticides used

Definition and characterization through the concept of environmental innovation
Renning, 2000

Analysis of the evolutionary determinants of environmental innovations
Oltra, 2008

Environmental regulation
- 50% of pesticides used by 2018

Demand
- From consumers
 - Bazochet et al., 2008

Technological opportunities
- Appropriation?

LEARNING PROCESSES
- Collective construction of innovations in agriculture
 - Labarthe, 2006
 - Darré, 1996

Agricultural Economics
- Characteristics of innovators/leaders in agriculture
 - Fernandez: Cornejo, 1998
 - Cazals, 2006

Economically, performance? (Alonso Ugaglia, 2011)

An example: Mildium®, an innovation to reduce fungicide use in grape growing

Regression trees:
- To explain the choice to implement Mildium® or not (= explaining the values taken by the dependant variable: \(PIMM \))
- To hierarchize the determinants of pesticide reduction

-C&RT method (Breiman et al., 1984; Ripley, 1996) via XLSTAT®

Economical Success Factors of Pesticide Reduction in Grape Growing

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Ecart-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>25</td>
<td>65</td>
<td>53.133</td>
<td>8.958</td>
</tr>
<tr>
<td>Area</td>
<td>3</td>
<td>200</td>
<td>35.533</td>
<td>32.117</td>
</tr>
<tr>
<td>Labour Force</td>
<td>1</td>
<td>39</td>
<td>5.493</td>
<td>8.411</td>
</tr>
<tr>
<td>Turnover (K€)</td>
<td>5534</td>
<td>140807</td>
<td>2328,766</td>
<td>16237,932</td>
</tr>
<tr>
<td>Result (K€)</td>
<td>-453,757</td>
<td>38486</td>
<td>564,974</td>
<td>4445,617</td>
</tr>
</tbody>
</table>

Qualitative variable
- DEV: 0 49 65.3
- ACCOMP: 0 26 34.7
• Few growers agree with the adoption of Mildium® (because of the need of new skills and learning process, cf. Alonso Ugaglia, 2011)

• Importance of the extension services, particularly for growers who are not leaders

• To achieve the goal of -50% by 2018 : necessity to develop extension services for Mildium® or other methods

The goal of the paper was to better understand the determinants of pesticide reduction in grape growing

We highlight a hierarchy between determinants and major role of extension services

Some other questions still have to be adressed (other technologies, combination of technologies, structuration of extension services...)

Thanks for attention