Expert and Peer Pressure in Food and Wine Tasting:
Evidence from a Pilot Experiment

Paolo Buonanno (University of Bergamo)

Giovanni Caggiano (University of Padua)

Matteo M Galizzi (University of Brescia and University of York)

Leone Leonida (Queen Mary University, London)

Paolo Vanin (University of Padua)

Premise: individual preferences are a primitive in economic analysis

Main questions:
- Are individual preferences influenced by preferences expressed by other people?
- And if so, how?

Specific questions:
- What is the influence of peers and experts?
- Is it different for food and wine?

Empirical strategy: Controlled experiment on food and wine tasting

Motivation: Hard to use field data

- Revealed preferences might reflect either genuine taste or social influence
- Reflection problem in the identification of peer effects (Manski 1993)

Main results from the pilot experiment:
- There is significant social influence on preferences
- Experts influence individual taste for wine
- Peers influence (to some extent) individual taste for food
Stable vs. endogenous preferences

- **Stable preferences**: Stigler and Becker (1977)

- **Endogenous preferences**:
 - Intergenerational transmission of values or priors: Bisin and Verdier (2000, 2001); Bisin, Topa and Verdier (2004); Corneo and Jeanne (2007); Guiso, Sapienza and Zingales (2007)
 - Informative vs. manipulative advertising: Bagwell (2007)

Peer and social pressure: growing literature on its importance

- **Work effort**: Kandel and Lazear (1992); Ichino and Maggi (2000); Falk and Ichino (2006); Mas and Moretti (2008)

- **Crime**: Glaeser et al. (1996); Patacchini and Zenou (2005)

- **Substance use and abuse**, and, more generally, deviant behaviour: Clark and Lohéac (2007); Loureiro et al. (2006); DeSimone (2007, 2008)

- All this work concerns peer effects on actual behaviour

- We rather investigate peer effects on preferences

Food and wine

- Genuine heterogeneity of tastes

- Interpersonal and convivial dimension (Buonanno and Vanin, 2007): relevance of social pressure?

- Harder to evaluate the quality of wine than of food: asymmetric impact of experts?

- If peers and experts significantly affect preferences for food and wine, *a fortiori* they may be relevant for other, less deeply rooted individual preferences
Previous experiments on food and wine tasting

- **Food tasting**: Fevrier and Visser (2004); Combris, Lange and Issanchou (2007)
- **Food and wine**: Galizzi and Mirdalo (2007)
- **Wine tasting**: Combris, Lange and Issanchou (2006); Galizzi and Reiley (2008); Plassman, O’Doherty, Shiv and Rangell (2008); Bazoche, Combris, Giraud-Heraud and Traversac (2008)

Experimental design

- **60 subjects** (non expert consumers) called to Bergamo in different waves
- **4 treatments**, each with 15 subjects: fe, fp, we, wp
- **Food treatment (f)**:
 - blind taste three Italian cured hams
 - evaluate them on a 0-100 scale
 - receive information on evaluation by either experts (e) or peers (p)
 - evaluate the three hams again
- **Wine (w)**: similar procedure, with three different Italian wines
 - 3 glasses of the same type of wine (*Dolcetto*), from 3 leading areas in North Italy (Alba, Dogliani and Ovada)
 - Random selection of a winner, who receives either gr. 250 of the preferred ham or a bottle of the preferred wine
 - Show-up fee for the other participants
- **Food experts**: Slow Food (2007)
- **Wine experts**: four leading professional sommelier guides in Italy (Associazione Italiana Sommelier AIS, Seminario Veronelli, Gambero Rosso-Slow Food and L’Espresso)
- **Peers**: average final evaluation by participants in the expert treatment
Table 1: Food tasting - Treatment fe

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Expert evaluation</th>
<th>Stage 3</th>
<th>Wilcoxon signed ranks test (p-values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham 1</td>
<td>70,33</td>
<td>91</td>
<td>73,33</td>
</tr>
<tr>
<td>Ham 2</td>
<td>73,00</td>
<td>90</td>
<td>72,00</td>
</tr>
<tr>
<td>Ham 3</td>
<td>57,67</td>
<td>84</td>
<td>58,67</td>
</tr>
</tbody>
</table>

Table 2: Food tasting - Treatment fp

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Peer evaluation</th>
<th>Stage 3</th>
<th>Wilcoxon signed ranks test (p-values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham 1</td>
<td>62,60</td>
<td>73,33</td>
<td>72,53</td>
</tr>
<tr>
<td>Ham 2</td>
<td>69,00</td>
<td>72,00</td>
<td>77,33</td>
</tr>
<tr>
<td>Ham 3</td>
<td>65,80</td>
<td>58,67</td>
<td>62,47</td>
</tr>
</tbody>
</table>

Table 3: Wine tasting - Treatment we

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Expert evaluation</th>
<th>Stage 3</th>
<th>Wilcoxon signed ranks test (p-values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 1</td>
<td>65,13</td>
<td>84</td>
<td>73,33</td>
</tr>
<tr>
<td>Wine 2</td>
<td>56,33</td>
<td>88</td>
<td>74,00</td>
</tr>
<tr>
<td>Wine 3</td>
<td>53,40</td>
<td>86</td>
<td>67,87</td>
</tr>
</tbody>
</table>

Table 4: Wine tasting - Treatment wp

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Peer evaluation</th>
<th>Stage 3</th>
<th>Wilcoxon signed ranks test (p-values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine 1</td>
<td>59,33</td>
<td>73,33</td>
<td>62,67</td>
</tr>
<tr>
<td>Wine 2</td>
<td>66,00</td>
<td>74,00</td>
<td>68,00</td>
</tr>
<tr>
<td>Wine 3</td>
<td>54,53</td>
<td>67,87</td>
<td>52,87</td>
</tr>
</tbody>
</table>
Conclusions

- There is significant social influence on preferences
- Experts influence individual taste for wine
- Peers influence (to some extent) individual taste for food
- More evidence is needed: for instance, we only reveal information, but direct interaction might yield stronger effects
- Comments and suggestions are welcome!